TY - JOUR
T1 - Transcriptomic changes in the rumen epithelium of cattle after the induction of acidosis
AU - Gholizadeh, M.
AU - Fayazi, J.
AU - Zali, H.
AU - Asgari, Y.
N1 - Publisher Copyright:
© 2020 by Razi Vaccine & Serum Research Institute.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - The transition from normal forage to a highly fermentable diet to achieve rapid weight gain in the cattle industry can induce ruminal acidosis. The molecular host mechanisms that occur in acidosis are largely unknown. Therefore, the histology and transcriptome profiling of rumen epithelium was investigated in normal and acidosis animals to understand the molecular mechanisms involved in the disease. The rumen epithelial transcriptome from acidosis (n=3) and control (n=3) Holstein steers was obtained using RNA-sequencing. The mean values of clean reads were 70,975,460±984,046 and 71,142,189±834,526 in normal and acidosis samples, respectively. In total, 1,074 differentially expressed genes were identified in the two groups (P<0.05), of which 624 and 450 genes were up- and down-regulated in the acidosis samples, respectively. Functional analysis indicated that the majority of the up-regulated genes had a function in filament organization, positive regulation of epithelial and muscle fiber concentration, biomineral tissue development, negative regulation of fat cell differential, regulation of ion transmembrane transport, regulation of cell adhesion and butyrate, as well as shortchain fatty acid absorption that was metabolized as an energy source. Functional analysis of the down-regulated genes revealed effects in immune response, positive regulation of T-cell migration, regulation of metabolic processes, and localization. Furthermore, the results showed a differential expression of genes involved in the Map Kinase and Toll-like receptor signaling pathways. The IL1B, CXCL5, IL36A, and IL36B were significantly down-regulated in acidosis rumen tissue samples. The results suggest that rapid shifts to rich fermentable carbohydrates diets cause an increase in the concentration of ruminal volatile fatty acids, tissue damage, and significant changes in transcriptome profiles of rumen epithelial.
AB - The transition from normal forage to a highly fermentable diet to achieve rapid weight gain in the cattle industry can induce ruminal acidosis. The molecular host mechanisms that occur in acidosis are largely unknown. Therefore, the histology and transcriptome profiling of rumen epithelium was investigated in normal and acidosis animals to understand the molecular mechanisms involved in the disease. The rumen epithelial transcriptome from acidosis (n=3) and control (n=3) Holstein steers was obtained using RNA-sequencing. The mean values of clean reads were 70,975,460±984,046 and 71,142,189±834,526 in normal and acidosis samples, respectively. In total, 1,074 differentially expressed genes were identified in the two groups (P<0.05), of which 624 and 450 genes were up- and down-regulated in the acidosis samples, respectively. Functional analysis indicated that the majority of the up-regulated genes had a function in filament organization, positive regulation of epithelial and muscle fiber concentration, biomineral tissue development, negative regulation of fat cell differential, regulation of ion transmembrane transport, regulation of cell adhesion and butyrate, as well as shortchain fatty acid absorption that was metabolized as an energy source. Functional analysis of the down-regulated genes revealed effects in immune response, positive regulation of T-cell migration, regulation of metabolic processes, and localization. Furthermore, the results showed a differential expression of genes involved in the Map Kinase and Toll-like receptor signaling pathways. The IL1B, CXCL5, IL36A, and IL36B were significantly down-regulated in acidosis rumen tissue samples. The results suggest that rapid shifts to rich fermentable carbohydrates diets cause an increase in the concentration of ruminal volatile fatty acids, tissue damage, and significant changes in transcriptome profiles of rumen epithelial.
KW - Acidosis
KW - Cattle
KW - Ruminal epithelial tissue
KW - Transcriptome
UR - http://www.scopus.com/inward/record.url?scp=85083413526&partnerID=8YFLogxK
U2 - 10.22092/ARI.2019.125930.1326
DO - 10.22092/ARI.2019.125930.1326
M3 - Article
C2 - 32292009
AN - SCOPUS:85083413526
SN - 0365-3439
VL - 75
SP - 109
EP - 121
JO - Archives of Razi Institute
JF - Archives of Razi Institute
IS - 1
ER -