TY - JOUR
T1 - Trial Watch
T2 - Peptide vaccines in cancer therapy
AU - Aranda, Fernando
AU - Vacchelli, Erika
AU - Eggermont, Alexander
AU - Galon, Jerome
AU - Sautès-Fridman, Catherine
AU - Tartour, Eric
AU - Zitvogel, Laurence
AU - Kroemer, Guido
AU - Galluzzi, Lorenzo
N1 - Funding Information:
Authors are supported by the European Commission (ArtForce); European Research Council (ERC); Agence National de la Recherche (ANR); Ligue Nationale contre le Cancer; Fondation pour la Recherche Médicale (FRM); Institut National du Cancer (INCa); Association pour la Recherche sur le Cancer (ARC), LabEx Immuno-Oncologie; Fondation de France; Fondation Bettencourt-Schueller; AXA Chair for Longevity Research; Cancéropôle Ile-de-France, Paris Alliance of Cancer Research Institutes (PACRI) and Cancer Research for Personalized Medicine (CARPEM).
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Throughout the past 3 decades, along with the recognition that the immune system not only influences oncogenesis and tumor progression, but also determines how established neoplastic lesions respond therapy, renovated enthusiasm has gathered around the possibility of using vaccines as anticancer agents. Such an enthusiasm quickly tempered when it became clear that anticancer vaccines would have to be devised as therapeutic, rather than prophylactic, measures, and that malignant cells often fail to elicit (or actively suppress) innate and adaptive immune responses. Nonetheless, accumulating evidence indicates that a variety of anticancer vaccines, including cell-based, DNA-based, and purified component-based preparations, are capable of circumventing the poorly immunogenic and highly immunosuppressive nature of most tumors and elicit (at least under some circumstances) therapeutically relevant immune responses. Great efforts are currently being devoted to the identification of strategies that may provide anticancer vaccines with the capacity of breaking immunological tolerance and eliciting tumor-associated antigen-specific immunity in a majority of patients. In this sense, promising results have been obtained by combining anticancer vaccines with a relatively varied panels of adjuvants, including multiple immunostimulatory cytokines, Toll-like receptor agonists as well as inhibitors of immune checkpoints. One year ago, in the December issue of OncoImmunology, we discussed the biological mechanisms that underlie the antineoplastic effects of peptide-based vaccines and presented an abundant literature demonstrating the prominent clinical potential of such an approach. Here, we review the latest developments in this exciting area of research, focusing on high-profile studies that have been published during the last 13 mo and clinical trials launched in the same period to evaluate purified peptides or full-length proteins as therapeutic anticancer agents.
AB - Throughout the past 3 decades, along with the recognition that the immune system not only influences oncogenesis and tumor progression, but also determines how established neoplastic lesions respond therapy, renovated enthusiasm has gathered around the possibility of using vaccines as anticancer agents. Such an enthusiasm quickly tempered when it became clear that anticancer vaccines would have to be devised as therapeutic, rather than prophylactic, measures, and that malignant cells often fail to elicit (or actively suppress) innate and adaptive immune responses. Nonetheless, accumulating evidence indicates that a variety of anticancer vaccines, including cell-based, DNA-based, and purified component-based preparations, are capable of circumventing the poorly immunogenic and highly immunosuppressive nature of most tumors and elicit (at least under some circumstances) therapeutically relevant immune responses. Great efforts are currently being devoted to the identification of strategies that may provide anticancer vaccines with the capacity of breaking immunological tolerance and eliciting tumor-associated antigen-specific immunity in a majority of patients. In this sense, promising results have been obtained by combining anticancer vaccines with a relatively varied panels of adjuvants, including multiple immunostimulatory cytokines, Toll-like receptor agonists as well as inhibitors of immune checkpoints. One year ago, in the December issue of OncoImmunology, we discussed the biological mechanisms that underlie the antineoplastic effects of peptide-based vaccines and presented an abundant literature demonstrating the prominent clinical potential of such an approach. Here, we review the latest developments in this exciting area of research, focusing on high-profile studies that have been published during the last 13 mo and clinical trials launched in the same period to evaluate purified peptides or full-length proteins as therapeutic anticancer agents.
KW - Adjuvants
KW - Dendritic cells
KW - Ipilimumab
KW - NY-ESO-1
KW - Survivin
KW - TLR agonists
UR - http://www.scopus.com/inward/record.url?scp=84894553314&partnerID=8YFLogxK
U2 - 10.4161/onci.26621
DO - 10.4161/onci.26621
M3 - Review article
AN - SCOPUS:84894553314
SN - 2162-4011
VL - 2
SP - 1
EP - 11
JO - OncoImmunology
JF - OncoImmunology
IS - 12
ER -