U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets

Théo Estienne, Maria Vakalopoulou, Stergios Christodoulidis, Enzo Battistela, Marvin Lerousseau, Alexandre Carre, Guillaume Klausner, Roger Sun, Charlotte Robert, Stavroula Mougiakakou, Nikos Paragios, Eric Deutsch

    Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

    44 Citations (Scopus)

    Résumé

    In this study, we propose a 3D deep neural network called U-ReSNet, a joint framework that can accurately register and segment medical volumes. The proposed network learns to automatically generate linear and elastic deformation models, trained by minimizing the mean square error and the local cross correlation similarity metrics. In parallel, a coupled architecture is integrated, seeking to provide segmentation maps for anatomies or tissue patterns using an additional decoder part trained with the dice coefficient metric. U-ReSNet is trained in an end to end fashion, while due to this joint optimization the generated network features are more informative leading to promising results compared to other deep learning-based methods existing in the literature. We evaluated the proposed architecture using the publicly available OASIS 3 dataset, measuring the dice coefficient metric for both registration and segmentation tasks. Our promising results indicate the potentials of our method which is composed from a convolutional architecture that is extremely simple and light in terms of parameters.

    langue originaleAnglais
    titreMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
    rédacteurs en chefDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
    EditeurSpringer Science and Business Media Deutschland GmbH
    Pages310-319
    Nombre de pages10
    ISBN (imprimé)9783030322472
    Les DOIs
    étatPublié - 1 janv. 2019
    Evénement22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, Chine
    Durée: 13 oct. 201917 oct. 2019

    Série de publications

    NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume11766 LNCS
    ISSN (imprimé)0302-9743
    ISSN (Electronique)1611-3349

    Une conférence

    Une conférence22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
    Pays/TerritoireChine
    La villeShenzhen
    période13/10/1917/10/19

    Contient cette citation