Weakly Supervised Multiple Instance Learning Histopathological Tumor Segmentation

Marvin Lerousseau, Maria Vakalopoulou, Marion Classe, Julien Adam, Enzo Battistella, Alexandre Carré, Théo Estienne, Théophraste Henry, Eric Deutsch, Nikos Paragios

    Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

    51 Citations (Scopus)

    Résumé

    Histopathological image segmentation is a challenging and important topic in medical imaging with tremendous potential impact in clinical practice. State of the art methods rely on hand-crafted annotations which hinder clinical translation since histology suffers from significant variations between cancer phenotypes. In this paper, we propose a weakly supervised framework for whole slide imaging segmentation that relies on standard clinical annotations, available in most medical systems. In particular, we exploit a multiple instance learning scheme for training models. The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset. Promising results when compared with experts’ annotations demonstrate the potentials of the presented approach. The complete framework, including 6481 generated tumor maps and data processing, is available at https://github.com/marvinler/tcga_segmentation.

    langue originaleAnglais
    titreMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
    rédacteurs en chefAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
    EditeurSpringer Science and Business Media Deutschland GmbH
    Pages470-479
    Nombre de pages10
    ISBN (imprimé)9783030597214
    Les DOIs
    étatPublié - 1 janv. 2020
    Evénement23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Pérou
    Durée: 4 oct. 20208 oct. 2020

    Série de publications

    NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume12265 LNCS
    ISSN (imprimé)0302-9743
    ISSN (Electronique)1611-3349

    Une conférence

    Une conférence23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
    Pays/TerritoirePérou
    La villeLima
    période4/10/208/10/20

    Contient cette citation